NONSTATIONARY SHEAR FLOW OF A VISCOPLASTIC MEDIUM
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We consider problems irivolving nonstationary shear flow of a viscoplastic medium between
two parallel plates and also in a cylindrical tube under the action of a time-varying shear
stress applied to the walls of the passage.

A survey of studies relating to the hydrodynamics of viscoplastic media (Schwedoff—Bingham plastics)
is contained in [1-5]. In the analysis of shear flows of viscoplastic media the greatest interest centers on
finding the surface separating the viscous flow zone from the zone of quasirigid motion; this leads to prob-
lems with an unknown boundary for an equation of parabolic type, analogous to freezing problems [6, 7].

In [8] nonstationary flows of a viscoplastic medium were investigated by using a method of statistical
experiments (Monte Carlo method).

Problems concerning freezing were studied in [9-13] by the method of successive approximations; a
series of such problems were solved in this way.

We consider a nonstationary one-dimensional shear flow of a viscoplastic medium in a two-dimen-
sional channel of height 2q or in a cylindrical tube of cross~section radius ¢ under the action of a time-
varying shear stress applied to the walls of the two-dimensional passage or to the wall of the cylindrical
tube.

The flow picture assumed here, together with the arrangement of the coordinate system, is shown in
Fig. 1.

We assume that for t < 0 the walls of the passage (x = ¢ @) or the wall of the cylindrical tube (x = a)
are fixed; the motion of the medium commences at the instant t = 0 from a state of rest; for t > 0 the flow
has a unique nonzero velocity component u, = u(x, t), and the tangential shear stress T is a function only of
the transverse coordinate x and the time t. The rheological equation of the flow of a viscoplastic medium
(Schwedoff—Bingham plastics) for one-dimensional flows of this type has the form

tzu%——[-rosign(%;f—) for |T|>7, @)
Du 0 for |T|<7
9z <% (2)

where 4 is the coefficient of dynamic viscosity, 7y is the limiting tangential shear stress (rheological con-
stants of the medium). By taking advantage of the symmetry of the two-dimensional shear flow we can re-
strict our discussion to the upper half of the passage, 0 < x < «. Moreover, in both the two~dimensional
and axially symmetric cases, we assume that the condition

sign (-g—;—) =1

is satisfied in the viscous flow zone for all values of t > 0.
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In the absence of a pressure gradient and a volume density of external forces

we can, upon taking into account the assumptions made above, write the equation of
a motion of the continuous medium in the form

d 1 0 .
Por =75 5 () ®)
b

where p is the density of the medium,and k =1 for the two-dimensional case whlle
k = 2 for the axially symmetric case.

Differentiating Eq. (8) with respect to the variable x and Eq. (1) with respect

to variable t, and eliminating the expression &u/9x 9t from the resulting system, we
Fig.1 obtain

p or a1 o
t =% | @

We remark that Eq. (4) describes the time variation of the tangential shear stress distribution in the
viscous flow zone since it is only in this zone that the expressions (1) and (3) are valid

By virtue of the continuity of the tangential shear stresses at x = ¢, we have the boundary condition

T ) = o) ©®)

If x = 6(t) is the equation of the boundary separéting the plastic flow zone from the zone of quasirigid
motion, then when x = 6(t) the following condition must be satisfied on this unknown boundary

Tz, §) = T, for z =3 (1

As a consequence of the motion of the quasirigid core as a single entity, we have

®)

= 5 @) = (b + Dy for z=8(1) ()

Since the flow develops from a state of rest in whlch the quasirigid zone occupies the whole flow re-
gion, we have, as our initial condition on 6(f),

§(0) =0

We now develop relation (7) in moredetail, since neglecting this condition would lead to erroneous
results [14, 15], as shown for the two-dimensional case in [16]

®)

. We consider the motion of the viscoplastic
medium in the guasirigid zone,for which, taking into account the rheological equation in the form (2), we
have u = uy(t).

Moreover from the equation of motion (3) it follows that

dr ) =1(8), 0z <8 ()
where f£(t) is a function yet to be defined.

The general solution of Eg. (9) has the form

t=FW)zk+ 1)+t C@) (o)
where C(t) is an arbitrary function. When x —0 the tangential shear stress 7 — 0; therefore C(t) = 0. Tak-
ing into account the condition 6) on the unknown boundary, we obtain from expression (10)

T =1 2/6 (t) (11)
The relation (7) can be obtained from the expression (11) by taking into account the continuity of the

velocity of the medium and the tangential shear stresses in passing through the boundary x = 6(t) separat-
ing the zones. We introduce the dimensionless quantities

x 8 Te
x*=—a—, A*=T’ T*— S-——

T t*
q)t
q)* (t*) ~ L T()
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where T is a characteristic stress. In dimensionless form problem (4) and (8) has the form

L= F [ e] a0<e<t, 0<i<n < 2)
=9 a3)

T(A,y=S8 (14)

S (@) | = £ 15)

A0) =1 16)

Here and henceforth the asterisk, used to denote dimensionless quantities, will be dropped.

We now construct a solution of the problem (12)-(16). Integrating Eq. (12) twice with respect to the
variable x between the limits of A and x and noting the conditions (15) and (14), and subsequently the condi-
tion (13) also, we obtain, after some simple manipulations, a system of functional equations for determining
7(x, t) andA(f): ‘

T= S—Z—-{——%; iz" §—%1;— dxdx @7
A A
A=S§ [(P(t) — ix" i_‘g_ dxdx]_l (18)
X A

The functional equation (18) is compatible with the initial condition (16) on A(t); it places the following
restriction on the function ¢(t):

90 =S

We note that the formation of the viscoplastie flow zone is only possible when the following condition
is satisfied:
PB)>S— (o S—‘;'t— dadz
a

| 2 g P

For a specified class of functions ¢ (t) the system of functional equations (17) and (18) may be solved
by the method of successive approximations

x
z 1 ¢ i af’n
Tn+1 =3 —A';- + o S xz S 3t dxdz

19)

W [e)— S z %dzdz]"
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As the zeroth approximation we take

z 8
To‘:STD, A():'TP“(?)‘ (20)

The choice (20) for the zeroth approximation corresponds physically to the case of a viscoplastic
medium with an infinitely small value of the density.

Using the iterational scheme (19) with k = 0 and 1, we carried out the zeroth, first, and second ap-~
proximations. To obtain concrete results we used the following expression for the function ¢(t):

S (4 + mt)
Q) = 1-F mst

The function ¢ (t) satisfies the conditions

PO =S, @) =1

which makes it possible to model the outflow rate of the nonstationary flow of the viscoplastic medium on

a special "stationary regime" wherein the accelerations of the channel wall and of quasirigid core of the
flow stay constant with time. The presence in the expression for ¢ () of the parameter m makes it possible
to estimate the influence of the rapidity of growth of the shear stresses applied to the wall of the two-di-
mensional passage and to the wall of the cylindrical tube on the variation in the position of the boundary
separating the zones. In addition, the parameter m has an influence on the convergence of the iterational
process. Our calculations show that the convergence of the iterational process is entirely satisfactory for
1 = m = 10 and that it becomes poorer as m increases. For valuesofm >100 the process no longer con-
verges. As the plasticity parameter S varies from 0.2 to 0.8, the convergence of the iterational process
improves as S increases, '

In Fig. 2 we present the results of our calculations, using the iterational scheme (19), for the two~
dimensional case with m =5 (the labels 1, 2, and 3 correspond to values of the plasticity parameter S equal,
respectively, to 0.8, 0.6, and 0.2). In the curves of Fig. 2

Ay < Ay < Ay

Figure 3 shows the influence of the parameter m on the development of the flow of the viscoplastic
medium in a circular tube. The plasticity parameter S = 0.4 (the labels 1, 2, and 3 correspond, respec—
tively, to values of the parameter m equal to 1, 3, and 7). In the curves of Fig. 3

A <Ay A

The maximum difference between the second and the first approximations for A(t) in the time interval
of variation studied amounted to no more than 0.07, which confirms the applicability of our method to the
solution of the problem considered.
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